
The Dirichlet Function
2-15
The Dirichlet Function
The toolbox function diric computes the Dirichlet function, sometimes called the
periodic sinc or aliased sinc function, for an input vector or matrix x. The Dirichlet
function, D(x) is:
D x
Nx
N x
x k k
x
k N
( )
sin( / )
sin( / )
, , , , , ,...
( ) ,
( )
=
π = ± ± ±
-
-
2
2
2 0 1 2 3
1
1
p
== = ± ± ±
Ï
Ì
Ô
Ó
Ô
2 0 1 2 3
p
k k, , , , ,...
where N is a user-specified positive integer. For N odd, the Dirichlet function has a
period of 2π; for N even, its period is 4π. The magnitude of this function is (1/N) times the
magnitude of the discrete-time Fourier transform of the N-point rectangular window.
To plot the Dirichlet function over the range 0 to 4π for N=7 and N=8, use
x = linspace(0,4*pi,300);
subplot(2,1,1)
plot(x,diric(x,7))
axis tight
title('n = 7')
subplot(2,1,2)
plot(x,diric(x,8))
axis tight
title('n = 8')
Commentaires sur ces manuels