MATLAB CURVE FITTING TOOLBOX - RELEASE NOTES Guide de l'utilisateur Page 148

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 216
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 147
3 Fitting Data
3-72
Example: Nonparametric Fit
This example fits the following data using a cubic spline interpolant and
several smoothing splines.
rand('state',0);
x = (4*pi)*[0 1 rand(1,25)];
y = sin(x) + .2*(rand(size(x))-.5);
As shown below, you can fit the data with a cubic spline by selecting
Interpolant from the Type of fit list.
The results shown below indicate that goodness of fit statistics are not defined
for interpolants.
As described in Interpolants on page 3-68, cubic spline interpolation is
defined as a piecewise polynomial that results in a structure of coefficients. The
number of pieces in the structure is one less than the number of fitted data
points, and the number of coefficients for each piece is four because the
polynomial degree is three. The toolbox does not allow you to access the
structure of coefficients.
Vue de la page 147
1 2 ... 143 144 145 146 147 148 149 150 151 152 153 ... 215 216

Commentaires sur ces manuels

Pas de commentaire