MATLAB FINANCIAL DERIVATIVES TOOLBOX Manuel d'utilisateur Page 17

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 119
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 16
16
“*” and “/” follow by working from left to right: (e.g. 2*8/4 = 16/4 = 4)
“+” and “-” follow last, from left to right: (e.g. 6-7+2= -1+2 = 1)
Note that “e” notation is used for very large or very small numbers. By
definition: 1e1=1X10
1
and 1e-1=1X10
-1
.
Trigonometric Exponential
s
s
i
i
n
n
Sine.
e
e
x
x
p
p
Exponential
s
s
i
i
n
n
h
h
Hyperbolic sine.
L
L
o
o
g
g
Natural logarithm.
a
a
s
s
i
i
n
n
Inverse sine.
l
l
o
o
g
g
1
1
0
0
Common (base 10) logarithm.
a
a
s
s
i
i
n
n
h
h
Inverse hyperbolic sine.
l
l
o
o
g
g
2
2
Base 2 logarithm and dissect floating
c
c
o
o
s
s
Cosine.
p
p
o
o
w
w
2
2
Base 2 power and scale floating point
c
c
o
o
s
s
h
h
Hyperbolic cosine.
r
r
e
e
a
a
l
l
p
p
o
o
w
w
Power that will error out on complex
a
a
c
c
o
o
s
s
Inverse cosine.
r
r
e
e
a
a
l
l
l
l
o
o
g
g
Natural logarithm of real number.
a
a
c
c
o
o
s
s
h
h
Inverse hyperbolic cosine.
r
r
e
e
a
a
l
l
s
s
q
q
r
r
t
t
Square root of number greater than or
t
t
a
a
n
n
Tangent.
s
s
q
q
r
r
t
t
Square root.
t
t
a
a
n
n
h
h
Hyperbolic tangent.
n
n
e
e
x
x
t
t
p
p
o
o
w
w
2
2
Next higher power of 2.
a
a
t
t
a
a
n
n
Inverse tangent.
a
a
t
t
a
a
n
n
2
2
Four quadrant inverse
tangent.
Complex
a
a
t
t
a
a
n
n
h
h
Inverse hyperbolic tangent.
a
a
b
b
s
s
Absolute value.
s
s
e
e
c
c
Secant.
a
a
n
n
g
g
l
l
e
e
Phase angle.
s
s
e
e
c
c
h
h
Hyperbolic secant.
c
c
o
o
m
m
p
p
l
l
e
e
x
x
Construct complex data from real and
imaginary parts
a
a
s
s
e
e
c
c
Inverse secant.
c
c
o
o
n
n
j
j
Complex conjugate.
a
a
s
s
e
e
c
c
h
h
Inverse hyperbolic secant.
i
i
m
m
a
a
g
g
Complex imaginary part.
c
c
s
s
c
c
Cosecant.
r
r
e
e
a
a
l
l
Complex real part.
c
c
s
s
c
c
h
h
Hyperbolic cosecant.
u
u
n
n
w
w
r
r
a
a
p
p
Unwrap phase angle.
a
a
c
c
s
s
c
c
Inverse cosecant.
i
i
s
s
r
r
e
e
a
a
l
l
True for real array.
a
a
c
c
s
s
c
c
h
h
Inverse hyperbolic cosecant.
c
c
p
p
l
l
x
x
p
p
a
a
i
i
r
r
Sort numbers into complex conjugate pairs
c
c
o
o
t
t
Cotangent.
c
c
o
o
t
t
h
h
Hyperbolic cotangent.
Rounding and Remainder
a
a
c
c
o
o
t
t
Inverse cotangent.
f
f
i
i
x
x
Round towards zero.
a
a
c
c
o
o
t
t
h
h
Inverse hyperbolic
cotangent.
f
f
l
l
o
o
o
o
r
r
Round towards minus infinity.
c
c
o
o
t
t
h
h
Hyperbolic cotangent.
c
c
e
e
i
i
l
l
Round towards plus infinity.
a
a
c
c
o
o
t
t
Inverse cotangent.
r
r
o
o
u
u
n
n
d
d
Round towards nearest integer.
a
a
c
c
o
o
t
t
h
h
Inverse hyperbolic
cotangent.
m
m
o
o
d
d
Modulus (signed remainder after
r
r
e
e
m
m
remainder after division.
s
s
i
i
g
g
n
n
Signum.
Table 1: The elementary build-in functions
Matlab can handle three different kinds of numbers: integers, real numbers
and complex numbers (with imaginary parts). Moreover, it can handle non-
number expressions like:
N
N
a
a
N
N (Not-a-Number) produced from
mathematically undefined operations like: 0/0,
*
and
i
i
n
n
f
f produced by
Vue de la page 16
1 2 ... 12 13 14 15 16 17 18 19 20 21 22 ... 118 119

Commentaires sur ces manuels

Pas de commentaire