MATLAB FINANCIAL DERIVATIVES TOOLBOX Manuel d'utilisateur Page 67

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 119
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 66
66
Comments:
Creating the contour plot of the peaks function. Viewing this plot,
it is easy to identify the critical points of the function. There is
one global maximum, one global minimum, two local maxima and
a local minimum. Additionally, from the color-bar that is created
with the command:
c
c
o
o
l
l
o
o
r
r
b
b
a
a
r
r, and from the values printed next to
the contour curves, it is obvious that the peaks functions around
its critical points exhibits a flatness (saddle points) (Note: the “*”
that indicate a critical point are plotted approximately); the text
next to each critical point was placed with the
g
g
t
t
e
e
x
x
t
t command.
Alternatively, we can approximate the maximum of the peaks function by
searching exhaustively the
Z
Z matrix (to do so, we should re-define the
x
x and
y
y vectors to have high dense). This is done with the following code:
Matlab’s command:
>> close all; x=-2:0.05:2; y=-4:0.25:4; [X,Y]=meshgrid(x,y);
>> Z =3*(1-X).^2.*exp(-(X.^2) - (Y+1).^2)- ...
10*(X/5-X.^3-Y.^5).*exp(-X.^2-Y.^2)-1/3*exp(-(X+1).^2-Y.^2);
>> V=-10:1:10; [c,h] = contour(x,y,Z,V); clabel(c,h), colorbar; hold
on
>> xlabel('x'); ylabel('y'); title('Contour plot of the peaks function');
>> Fmax=max(max(Z)); P=find(Z==Fmax); xy=[X(P) Y(P)];
>> plot(xy(1),xy(2),'rp', 'MarkerSize',10);
>> text(xy(1)+0.05,xy(2), 'Maximum Point');
Matlab’s response:
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-4
-3
-2
-1
0
1
2
3
4
x
y
Contour plot of the peaks function
-6
-5
-5
-4
-4
-3
-3
-3
-3
-2
-2
-2
-2
-2
-1
-1
-1
-1
-1
-1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
22
2
2
2
2
2
2
3
3
3
3
3
3
3
4
4
4
5
5
5
6
6
7
7
Maximum Point
-6
-4
-2
0
2
4
6
Vue de la page 66
1 2 ... 62 63 64 65 66 67 68 69 70 71 72 ... 118 119

Commentaires sur ces manuels

Pas de commentaire