MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 207

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 206
Identifying Low-Order Transfer Functions (Process M odels)
You can export the model to the MATLAB w orkspace for further analysis
by dragging it to the To Workspace rectangle in the System Identication
Tool GUI.
Estimating Process Models at the Command Line
“Using pem to E stimate Pro cess Models” on page 3-29
“Example Estimating Process Models with Free Parameters at the
Command Line” on page 3-30
“Exam p le Estimating Proce ss M od el s with Fi xe d P a ra m eters a t the
Command Line” on page 3-32
Using pem to Estimate Process Models
You can estimate process models using the iterative estimation method pem
that minimizes the prediction errors to obtain maximum likelihood estimates.
The resulting models are stored as
idproc model objects.
You can use the following general syntax to both congure and estimate
process models:
m = pem(data,mod_struc,'Property1',Value1,...,
'PropertyN',ValueN)
data
is th e estimation data and mod_s truc is a string that represents
the process model structure, as described in “Options for Specifying the
Process-Model Structure” on page 3-35.
Tip You do not need to construct the model object u sing idproc before
estimation unless you want to specify initial parameter guesses or xed
parameter values, as d escribed in “Example Estimating Pro cess Models
with Fixed Parameters at the Command Line” on page 3 -32.
The property-value pairs specify any model properties that congure the
estimation algorithm and the initial conditions. For more information about
accessing and setting m odel properties, see “Model Properties” on page 2-14.
3-29
Vue de la page 206
1 2 ... 202 203 204 205 206 207 208 209 210 211 212 ... 530 531

Commentaires sur ces manuels

Pas de commentaire