MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 396

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 395
7 Recursive Techniques for Model Identification
Mathematics of the Unnormalized and Normalized Gradient
Algorithm
In the linear regression case, the gradient methods are also known as the
least mean squares (LMS ) methods.
The following set of equations summarizes the unnormalized gradient and
normalized gradient adaptation algorithm:
ˆˆ
ˆ
θθt t Kt yt yt
()
=−
()
+
() ()
()
()
1
ˆ
ˆ
yt t t
T
()
=
()
()
ψθ1
Kt Qt t
()
=
() ()
ψ
In the unnormalized gradient approach, Q(t) is the product of the gain
γ
and the identity matrix:
Qt I
()
In the normalized gradient approach, Q(t) is the product of the gain
γ
,and
the identity matrix is normalized by the magnitude of the gradient
ψ t
()
:
Qt
t
I
()
=
()
γ
ψ
2
These choices of Q(t) update the p arameters in the negative gradient direction,
where the gradient is computed with respect to the parameters.
Using the Unnormalized and Normalized Gradient Algorithms
The general syntax for the command described in “Algorithms for Recursive
Estimation” on page 7-6 is the following:
[params,y_hat]=command(data,nn,adm,ad g)
7-12
Vue de la page 395
1 2 ... 391 392 393 394 395 396 397 398 399 400 401 ... 530 531

Commentaires sur ces manuels

Pas de commentaire