MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 225

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 224
Identifying Input-Output Polynomial Models
For a system with nu inp uts and ny outputs, A(q)isanny-by- ny matrix. A(q)
can be represented as a polynomial in the shift operator q
-1
:
Aq I Aq A q
ny na
na
()=+ ++
−−
1
1
For more information about the time-shift operator, see “Understanding the
Time-Shift Operator q” on page 3-43.
A(q) can also be represented as a matrix:
Aq
aq aq a q
aq aq a q
aqa
ny
ny
ny n
()
() () ()
() () ()
()
=
11 12 1
21 22 2
1
……
yynynyq
qa
2
()
()
where the matrix element a
kj
is a polynomial in the shift operator q
-1
:
aq aq a q
kj kj kj
kj
na
na
kj
kj
()=+ ++
δ
11
δ
kj
represents the Kronecker delta, w hich equals 1 for k=j and equals 0
for kj. This polynomial describes h ow the old values of the jth output are
affected by the kth output. The ith row of A(q) represents the contribution of
the past output values for predict the current value of the ith output.
B(q)isanny-by-ny matrix. B(q) can be represented as a polynomial in the
shift operator q
-1
:
Bq B Bq B q
nb
nb
()=+ ++
−−
01
1
3-47
Vue de la page 224
1 2 ... 220 221 222 223 224 225 226 227 228 229 230 ... 530 531

Commentaires sur ces manuels

Pas de commentaire