MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 470

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 469
8 Model Analysis
Next Steps After Getting an Accurate Model
After you get an accurate model, you can simulate or predict model output.
For more info rmation, see Chapter 9, “Simulation and Prediction”.
Forlinearparametricmodels(
idmodel objects), you can perform the following
operations:
Transform between continuous-time and discrete-time representation.
See “Transforming Between Discrete-Time and Continuous-Time
Representations” on page 3-112.
Transform betwee n linear model representations, such as between
polynomial, state-space, and zero-pole representations.
See “Transforming B etw een Linear M odel Representations” on page 3-117.
Extract numerical data from transfer functions, pole-zero models, and
state-space matrices.
See “Extracting Parameter Values from Linear Models” on page 3-108.
For nonlinear black-bo x mode ls (
idnlarx and idnlhwobjects), you can perform
the following operations:
Compute a linear approximation of the nonlinear model.
See “Computing Linear Approximations of Nonlinear Black-Box Models”
on page 4-33.
Extract model parameters.
See “Extracting Parameter V alues from Nonlinear Black-Box Models” on
page 4-30.
System Identication Toolbox models in the MATLAB workspace are
immediately available to other MathWorks™ products. However, if you used
the System Identication Tool GUI to estimate models, you must rst export
the models to the MATLA B workspace.
8-72
Vue de la page 469
1 2 ... 465 466 467 468 469 470 471 472 473 474 475 ... 530 531

Commentaires sur ces manuels

Pas de commentaire