MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 319

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 318
Identifying Nonlinear ARX Models
For detailed information about the nlarx and idnlarx properties and values,
see the corresponding reference page.
For mo re information about validating models, see Chapter 8, “Model
Analysis”.
Note You do not need to construct the model object using idnlarx befo re
estimation.
You can also use pem to rene parameter estimates of an existing nonlinear
ARX m odel, as described in “Rening Nonlinear Black-Box Models” on page
4-28.
Example Using nlarx to Estimate Nonlinear ARX Models
This example uses nlarx to estimate a nonlinear AR X model for the two-tank
system. The data for this system is described in “Tutorial Identifying
Nonlinear Bl ack - B ox M odels U s i ng the GU I” in the System Identication
Toolbox Getting Started G uide.
Prepare th e d ata for estimation u sin g the following commands:
load twotankda ta
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(10 01:3 000);
Estimate several m odels using diff erent model orders, delays, and
nonlinearity settings:
m1 = nlarx(ze,[2 2 1],'wav');
m2 = nlarx(ze,[2 2 3],wavenet);
m3 = nlarx(ze,[2 2 3],wavenet('num',8));
m4 = nlarx(ze,[2 2 3],wavenet('num',8),...
'nlr', [1 2]);
m5 = nlarx(ze,[2 2 3],sigmoidnet('num',14),...
'nlr',[1 2]);
4-13
Vue de la page 318
1 2 ... 314 315 316 317 318 319 320 321 322 323 324 ... 530 531

Commentaires sur ces manuels

Pas de commentaire