MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guide de l'utilisateur Page 314

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 531
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 313
4 Nonlinear Black-Box Model Identification
Using Custom Regressors
In general, custom regressors are nonlinear functions of d elay ed input and
output data sample s. You can specify custom regre ssors, such as tan(u(t-1)),
u(t-1)
2
,oru(t-1)*y(t-3).
In the System Identication Tool GUI. You can create custom regressors
in the Model Regresso rs dialog box. For more information, see “How to
Estimate Nonlinear ARX Models in the GUI” on page 4-10.
At the comm and line. Use the
customreg or polyreg command to construct
custom regressors in terms of input-output variables. For m ore information,
see the corresponding reference page.
The linear b lock includes all standa rd a nd custo m reg ressors. H owever, you
can include specic standard and custom regressors in your nonlinear block to
ne-tune the model structure.
To get a linear-in-the-parameters ARX model structure, you can exclude
the nonlinear block from the model structure completely. When using
only a linear block with custom regressors, you can create the simplest
types of nonlinear models. In this case, the custom regressors capture
the nonlinearities and the estimation routine computes the weights of the
standard and custom regressors in the linear block to predict the output.
4-8
Vue de la page 313
1 2 ... 309 310 311 312 313 314 315 316 317 318 319 ... 530 531

Commentaires sur ces manuels

Pas de commentaire